Share this post on:

Xample. Biomaterials 116, 158?73 (2017). 19. Swindall, A. F. et al. ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in standard Terpilene Description tissues and colon cancer cell lines. Cancer Res. 73, 1368?378 (2013). 20. Schultz, M. J. et al. The tumor-associated glycosyltransferase ST6Gal-I regulates stem cell transcription variables and confers a cancer stem cell phenotype. Cancer Res. 76, 3978?988 (2016). 21. Antony, P. et al. Epigenetic inactivation of ST6GAL1 in human bladder cancer. BMC Cancer 14, 901 (2014). 22. Zhao, Y. et al. 2,6-Sialylation mediates hepatocellular carcinoma development in vitro and in vivo by targeting the Wnt/-catenin (+)-Aeroplysinin-1 Epigenetics pathway. Oncogenesis 6, e343 (2017). 23. Wei, A. et al. ST6Gal-I overexpression facilitates prostate cancer progression by way of the PI3K/Akt/GSK-3/-catenin signaling pathway. Oncotarget 7, 65374?5388 (2016). 24. Su, X. et al. TAp63 suppresses mammary tumorigenesis by way of regulation in the Hippo pathway. Oncogene 36, 2377?393 (2017). 25. Yuan, Q. et al. Modification of two,6-sialylation mediates the invasiveness and tumorigenicity of non-small cell lung cancer cells in vitro and in vivo by way of Notch1/Hes1/MMPs pathway. Int. J. Cancer 143, 2319?330 (2018). 26. Chen, X. et al. ST6Gal-I modulates docetaxel sensitivity in human hepatocarcinoma cells through the p38 MAPK/caspase pathway. Oncotarget 7, 51955?1964 (2018). 27. Bao, Y. W., Hua, X. W., Chen, X. Wu, F. G. Platinum-doped carbon nanoparticles inhibit cancer cell migration under mild laser irradiation: multiorganelle-targeted photothermal therapy. Biomaterials 183, 30?two (2018). 28. Wu, G., Liu, J., Wu, Z., Wu, X. Yao, X. MicroRNA-184 inhibits cell proliferation and metastasis in human colorectal cancer by straight targeting IGF-1R. Oncol. Lett. 14, 3215 (2017). 29. Zhao, Y. et al. Modification of sialylation mediates the invasive properties and chemosensitivity of human hepatocellular carcinoma. Mol. Cell. Proteomics 13, 520?36 (2014). 30. Schultz, M. J., Swindall, A. F. Bellis, S. L. Regulation with the metastatic cell phenotype by sialylated glycans. Cancer Metastas. Rev. 31, 501?18 (2012).31. Lu, J. et al. -Galactoside 2,6-sialyltranferase 1 promotes transforming development factor–mediated epithelial-mesenchymal transition. J. Biol. Chem. 289, 34627?4641 (2014). 32. Qian, L. et al. 2,6-linked sialic acid serves as a high-affinity receptor for cancer oncolytic virotherapy with Newcastle illness virus. J. Cancer Res. Clin. Oncol. 143, 2171?181 (2017). 33. Dall’Olio, F. et al. Beta-galactoside alpha 2,6 sialyltransferase in human colon cancer: contribution of multiple transcripts to regulation of enzyme activity and reactivity with Sambucus nigra agglutinin. Int. J. Cancer 88, 58 (2000). 34. dos-Santos, P. B. et al. Eduardo Isidoro Carneiro Beltr . Lectin histochemistry reveals SNA as a prognostic carbohydrate-dependent probe for invasive ductal carcinoma from the breast: a clinicopathological and immunohistochemical auxiliary tool. Int. J. Clin. Exp. Pathol. 7, 2337?349 (2015). 35. Yu, S. et al. Caveolin1 upregulates integrin two,6sialylation to market integrin 51dependent hepatocarcinoma cell adhesion. FEBS Lett. 587, 782 (2013). 36. L ezmorales, D., Reyesleyva, J., Santosl ez, G., Zenteno, E. Vallejoruiz, V. Elevated expression of sialic acid in cervical biopsies with squamous intraepithelial lesions. Diagn. Pathol. 5, 1? (2010). 37. Kaburagi, T., Kizuka, Y., Kitazume, S. Taniguchi, N. The inhibitory role of two,6sialylation.

Share this post on: